

Identifying, Defending and Protecting Against Emerging Threats to Biometric Face Verification

Gemma Bird

Head of Biometric Platform iProov

Emerging Threats to Biometric Face Verification

- A recognised risk
- What are they; injection vs presentation attacks
- Why do they matter?
- Defending against them

The threat from synthetic imagery is increasingly well understood by policymakers

"In **2030**, non-state actors like criminal groups, hackers-for-hire as well as government actors will likely have the **technological capabilities** (e.g., deepfakes) to expand their disinformation efforts in the EU to **manipulate communities**."

ENISA, 2023

The threat from synthetic imagery is increasingly well understood by policymakers

"Deepfakes and the misuse of synthetic content pose a clear, present, and evolving threat to the public across national security, law enforcement, financial, and societal domains."

US Dept of Homeland Security, 2022

Genuine User Verification

Presentation Attack

An Injection Attack

Presentation Attacks vs Digital Injection Attacks

Presentation Attacks

Deployment: An artifact is presented to the camera

Detection: Detected via clues in the imagery

Scalability: Limited in scale. Threat actors can

deploy one attack at a time

Testing: Existing globally recognized standards

for Presentation Attack Detection

(ISO/IEC 30107)

Presentation Attacks vs Digital Injection Attacks

	Presentation Attacks	Digital Injection Attacks
Deployment:	An artifact is presented to the camera	Imagery is injected directly into the video stream
Detection:	Detected via clues in the imagery	Detected either via analyzing metadata or imagery- based testing
Scalability:	Limited in scale. Threat actors can deploy one attack at a time	Unlimited in scale. Threat actors can create highly automated attack machines
Testing:	Existing globally recognized standards for Presentation Attack Detection (ISO/IEC 30107)	No existing globally recognized standards for Digital Injection Attack Detection

Face Swap Attacks

Face swaps are a type of deepfake, created from two inputs. A new identity is superimposed over an existing video or live stream in real-time

2 - Target

Injection Attacks: Why They Matter

Prevalence

- Injection attacks are a present threat (5x PA rate on web)
- They now present a threat to all platforms (149% increase H1->H2 2022 on mobile web, Android and iOS)
- Injection attacks the primary route for persistent threat actors

Evolution

- Rapid of evolution of synthetic imagery methods (currently tracking >80 tools for faceswaps alone)
- Increased availability of injection and combined tools
- Example (295% increase in faceswap injection attacks H1->H2 2022)

Scalability

- Injection attacks can be launched by attack machines which can be fully automated
- Enables threat actors to explore areas of the threat landscape with minimal marginal cost per identity
- Current observation of bursts of IAs (00s or 000s) over short periods

Video injection attacks present a current threat which is highly scalable and evolving rapidly

© iProov 2023 1

Injection Attack Mitigations: High Level Approaches

Meta-data based

- Detect whether an injection has occurred
- Reliant on information that comes from the device
 - relies on obfuscation of the device code
- can be perfectly forged

Injection Attack Mitigations: High Level Approaches

Meta-data based

- Detect whether an injection has occurred
- Reliant on information that comes from the device
 - relies on obfuscation of the device code
- can be perfectly forged

Imagery-based

- Determine whether the imagery comes from a bonafide user
- Detection of synthetic imagery
 - hard to synthesise
 - not repeatable
 - high usability
- cannot be perfectly forged

Applicability of Approaches

No user action required

User action required

Repeated biometric signal

E.g. single frame, passive video

Meta data approaches only

E.g. user blinking, head turning

Meta data approaches only (replay attack)

١

signal

biometric

One-time

E.g. controlled illumination

Meta data approaches and Imagery-based approaches E.g. user reading words, numbers, sequences of actions

Meta data approaches and Imagery-based approaches

iProov Approach to Attack Mitigation

iSOC: Sourcing Biometric Threat Intelligence

iProov's global real-time threat intelligence system - iSOC

Detect and monitor attacks – across all geographies

Multiple platforms across multiple geographies

iSOC: Sourcing Biometric Threat Intelligence

Multiple platforms across multiple geographies

iSOC: Sourcing Biometric Threat Intelligence

Thank you

Genuine Presence Assurance Right person, Real person, Right now

contact@iproov.com

© iProov 2023 2