Norwegian University of Science and Technology

Evaluation and Improvement of eu-LISA Synthetic Biometric Datasets

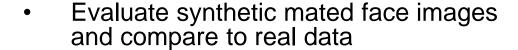
Marcel Grimmer, Christoph Busch Norwegian Biometrics Laboratory {marceg, christoph.busch}@ntnu.no

- Motivation & Project Overview
- Face Age Modification
- Experimental Setup
- Experimental Results
 - Biometric Quality
 - Comparison Score Analysis
- Conclusions

- Motivation & Project Overview
- Face Age Modification
- Experimental Setup
- Experimental Results
 - Biometric Quality
 - Comparison Score Analysis
- Conclusions

Motivation

- Need:
 - To train and evaluate recognition algorithms in large scale systems
- Problem:
 - Access to data, amount and privacy
- Potential solution:
 - Generate synthetic identities
- Aim of this work:
 - Analyse if synthetically generated (face) samples provide similar characteristic to the bona-fide samples.
 - Evaluate quality and comparison score distributions.

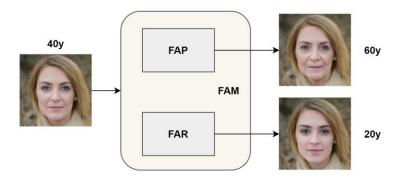


Project Overview

- Evaluate synthetic non-mated face images [Zhang2021]
 - Generate synthetic mated samples by
 - Head Pose [Grimmer2021]
 - Facial expression [Grimmer2021]

editing facial attributes

- Illumination [Grimmer2021]
- Age [Alaluf2021]



- Motivation & Project Overview
- Face Age Modification
- Experimental Setup
- Experimental Results
 - Biometric Quality
 - Comparison Score Analysis
- Conclusions

Face Age Modification

FAM: Use generative models to predict future (FAP) or past appearance (FAR)
of individuals

- Photorealism through concept of adversarial learning
 - Generator: Learns to generate realistic face images
 - Discriminator: Learns to distinguish generated face images from real face images

Example of Synthetic Data

DCGAN (2015) POGGAN (2018) StyleGAN (2019) StyleGAN2 (2020)

+ First convolutional GAN

+ Progressive upsampling (1024x1024)

+ Increase Controllability with better latent space disentanglement

+ Remove droplet artefacts

Application in Biometrics

- Face recognition systems must be ...
 - Sensitive to inter-identity variation: Twins, doppelgängers, etc..
 - Robust against intra-identity variation: expression, head pose, illumination, and age

1996 2001 2006 2007 2010 2015

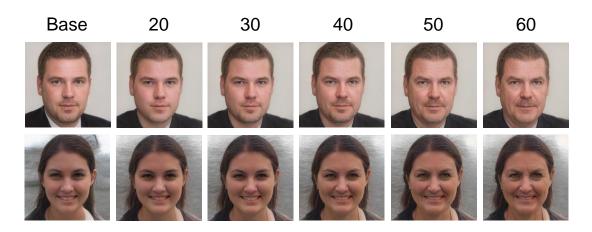
- Lack of available training samples captured over long time spans (>5y)
 - Recognition performance suffers

Application in Biometrics

 Idea: Simulate re-occuring anatomical changes in physiological characteristics with FAM algorithms

Real ageing

Synthetic ageing


- Possible Applications:
 - Increase robustness of face recognition systems through cross-age fine-tuning
 - Compensate age gap between probe and reference sample to reduce false negative identification rate (FNIR)
 - Evaluate impact of face ageing on FRSs → focus of this talk

- Motivation & Project Overview
- Face Age Modification
- Experimental Setup
- Experimental Results
 - Biometric Quality
 - Comparison Score Analysis
- Conclusions

Experimental Setup

- Use StyleGAN [Karras2019] [Karras2020]
 to generate random non-mated face images (Base)
- Use SAM [Alaluf2021]
 for face ageing framework for age progression and regression (Mated Samples)

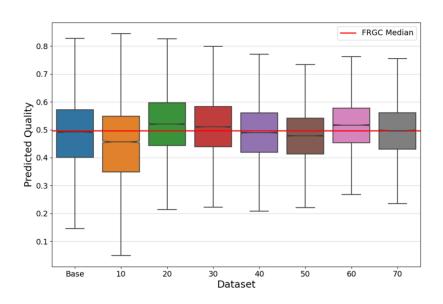
Experimental Setup

- Filter out images with
 - Inter-eye-distance < 90px
 - Age < 12 years</p>
 - Extreme Yaw and Pitch angles
 - Poor illumination

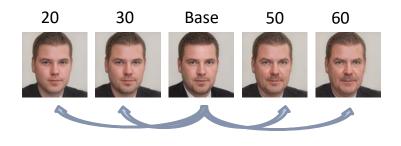
IED	Age	Yaw	Pitch	Illumination

Dataset	# Images before filtering	# Images after filtering
FRGC v2 [Phillips2005]	24,025	17,919
StyleGAN Base	50,000	25,918
SAM (target age = 10)		18,290
SAM (target age = 20)		22,671
SAM (target age = 30)		23,253
SAM (target age = 40)	25,918	23,513
SAM (target age = 50)		22,671
SAM (target age = 60)		17,174
SAM (target age = 70)		10,028

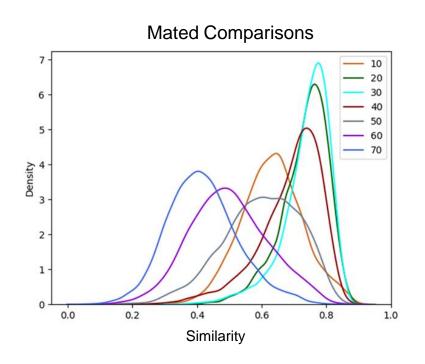
- Motivation & Project Overview
- Face Age Modification
- Experimental Setup
- Experimental Results
 - Biometric Quality
 - Comparison Score Analysis
- Conclusions

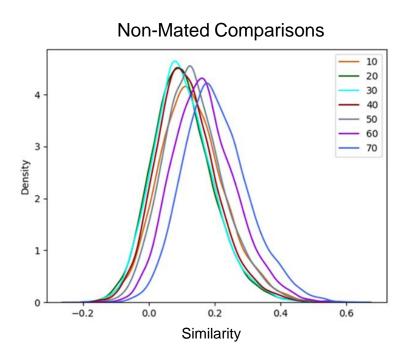

Evaluation

- Part A: Biometric Quality
 - Use Face image quality assessment algorithms (FIQAAs)
 - Predict biometric quality in numeric range [0,1]
 - 1: Perfect face recognition utility
 - 0: Worst face recognition utility
 - FIQAA: FaceQnet v1 [HernándezOrtega2020]
- Part B: Comparison Score Analysis
 - Face recognition: ArcFace [Deng2019]
 - Synthetic versus Synthetic
 - Synthetic versus Real (Short-term ageing)


Biometric Quality

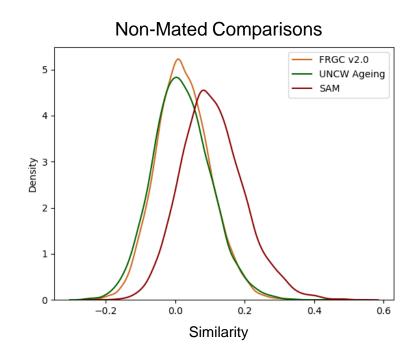
- Face Image Quality Assessment Algorithm: FaceQnet v1
- No statistical significant differences between synthetic and real datasets (95% confidence)




Evaluation

- Part A: Biometric Quality
 - Use Face image quality assessment algorithms (FIQAAs)
 - Predict biometric quality in numeric range [0,1]
 - 1: Perfect face recognition utility
 - 0: Worst face recognition utility
 - FIQAA: FaceQnet v1
- Part B: Comparison Score (CS) Analysis
 - Face recognition: ArcFace
 - Synthetic versus Synthetic
 - Synthetic versus Real (Short-term ageing)




CS Analysis: Synthetic vs Synthetic

CS Analysis: Synthetic vs Real

- Motivation & Project Overview
- Face Age Modification
- Experimental Setup
- Experimental Results
 - Biometric Quality
 - Comparison Score Analysis
- Conclusions

Conclusion

- FAM algorithms based on manipulations in the latent space
 - High visual quality with high resolution (1024x1024)
 - Accurate simulation of age progression and regression
- No statistically significant difference between synthetic and real data in terms of biometric quality (FaceQnet v1)
- Mated comparison score analysis confirms decreasing similarity with proceeding age
- Further experiments reommended to evaluate face recognition robustness to long-term age differences between reference and probe image

Conclusion

- Encouraging as a starting stage
 - more future work and further testing remains necessary
- Not fit for purpose to completely assess operational systems
 - We can test workload (i.e. throughput) and workload reduction
 - For biometric performance testing we shall report results for synthetic data and non-synthetic data (ISO/IEC 19795-1:2021 Cl. 7.4.9)

References

- [Zhang2021] H. Zhang, M. Grimmer, R. Raghavendra, K.Raja, C.Busch: "On the Applicability of Synthetic Data for Face Recognition", in Proceedings of 9th International Workshop on Biometrics and Forensics (IWBF), 2021
- [Grimmer2021] M. Grimmer, H. Zhang, R. Ramachandra, K. Raja, and C. Busch "Generation of Non-Deterministic Synthetic Face Datasets Guided by Identity Priors", arXiv preprint arXiv:2112.03632, 2021.
- [Karras2019] T. Karras, S. Laine and T. Aila, "A style-based generator architecture for generative adversarial networks", IEEE CVPR, 2019, pp. 4401-4410.
- [Karras2020] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. "Analyzing and improving the image quality of stylegan", IEEE CVPR, 2020.
- [Phillips2005] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min and W. Worek, "Overview of the face recognition grand challenge.", IEEE CVPR, 2005.
- [HernándezOrtega2020] J. Hernández-Ortega, J. Galbally, J. Fierrez and L. Beslay, "Biometric Quality: Review and Application to Face Recognition with FaceQnet." arXiv preprint arXiv:2006.03298, 2020.
- [Deng2019] J. Deng, J. Guo, N. Xue and S. Zafeiriou, "Arcface: Additive angular margin loss for deep face recognition", IEEE CVPR, 2019.
- [Alaluf2021] Y. Alaluf, O. Patashnik, and D. Cohen-Or, "Only a Matter of Style: Age Transformation Using a Style-Based Regression Model", arXiv preprint arXiv:2102.02754, 2021.
- [Ricanek2006] K. Ricanek and T. Tesafaye, "MORPH: a longitudinal image database of normal adult age-progression," 7th International Conference on Automatic Face and Gesture Recognition (FGR06), 2006, pp. 341-345.

Thank you for your attention